

Division of ArrMaz Custom Chemicals

Cold In Place Recycling Project Selection

Kevin McGlumphy, P.E.

Why Select Cold In Place Recycling?

- Improve serviceability of aged, deteriorated pavements
- **Reduce raw material costs**
- Level deformations & re-establish crown
- Retain overhead clearances and geometric design criteria.

Why Select Cold In Place Recycling?

- Minimize lane closure time and user delays
- **Public acceptance of recycling**
- **Recycled pavement can be recycled itself**
- **Reduce Life Cycle Costs**

Where?

Interstate Highways

Rural Roads

City Streets

Where?

Pavement conditions		CIR	Pavement conditions	CIR
Traffic	all levels	\checkmark	Stripping	?
Ruts	< 3/8 in	\checkmark	Texture - Rough	\checkmark
	3/8 - 1 in	?	Ride - Poor	
	>1 in	?	Poor Drainage	no
Crack	Fatigue	?	Snow Plow Use	<u>ان</u>
	Longitudinal	\checkmark	Low Skid Resistance	•
	Transverse	\checkmark		V
Surface	Dry	\checkmark		
	Flushing	\checkmark	Other Criteria	
	Bleeding	\checkmark	Rural	\checkmark
	Variable	\checkmark	Urban	?
Raveling		\checkmark	Low Life Cycle Cost	\checkmark
Potholes		\checkmark	High User-Delay \$	\checkmark

? = depends on the cause of the distress

For distress identification, consult SHRP P338

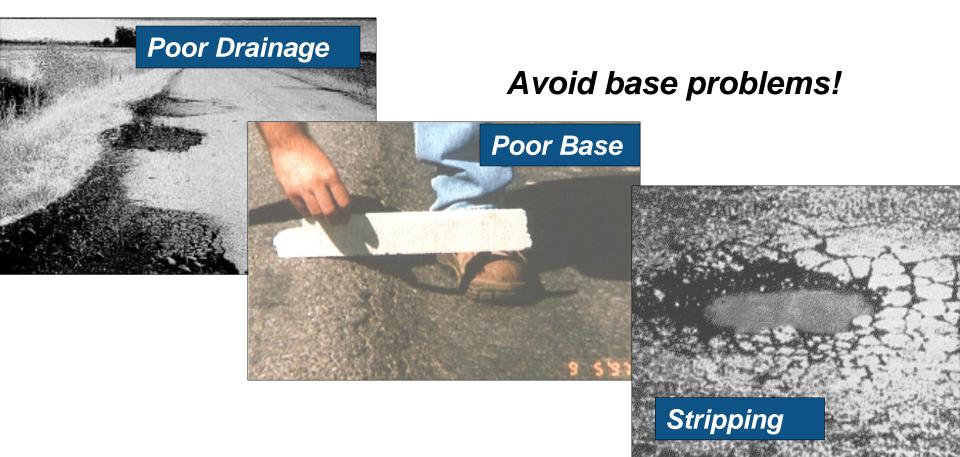
When to Recycle?

- Pavement at end of design life
 - Fatigue (alligator) cracking
- Oxidized
- **Raveling of thermal cracks potholes**
- Low clearances under bridges and geometric issues.

Pavement Distresses

Personal States of the second

Fatigue Cracking


Dry, Raveled

Solution – CIR

Patched

Distressed Pavements Not for ReFlex Emulsion CIR

Engineered System

Defined sampling procedure

·Millings sampled from Job Site

•Mill to the depth of proposed recycle

•Ensure that millings are of expected gradation.

•Coring

•Select a sample pattern that will generate representative materials.

Goal is to collect enough materials for design, to determine the thickness and recycling depth and to test subgade as needed.

Coring Considerations

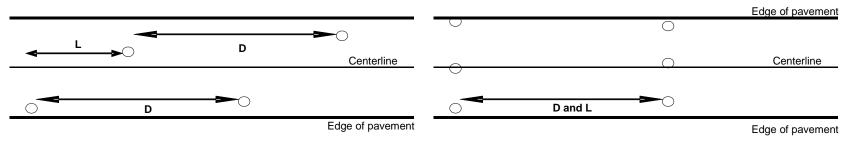


Diagram 1a – Staggered Sampling

Diagram 1b – Crossroad Sampling

Highways or Airports

- D 1 mile maximum
- L 0.5 mile maximum

At least 15% of the cores should be in the shoulder if the shoulder is getting recycled.

At least 25% of the cores should be on or within 3 feet of centerline.

Arterial and Industrial Streets

D - 2,000 feet maximum

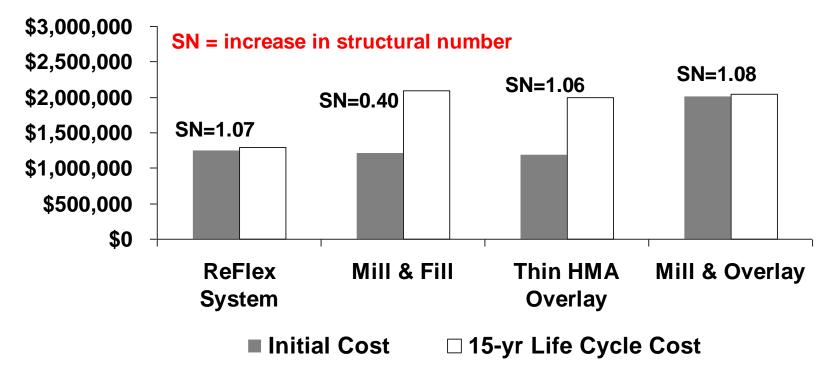
L – 1,000 feet maximum

At least 25% of the cores should be in the shoulder if it is getting recycled or within 3-feet of gutter.

At least 25% of the cores should be on or within 3-feet of centerline.

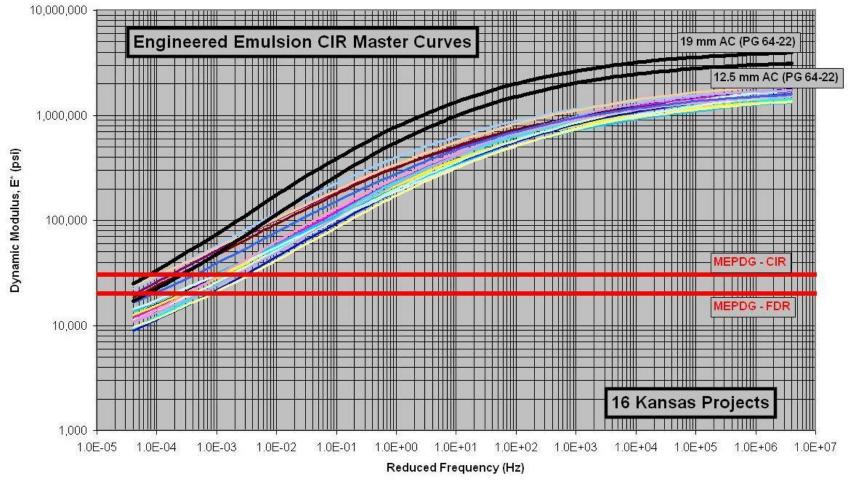
Residential Sites

Streets less than 250 feet long one core


Streets 250 to 500 feet long two cores. One within 3-feet of gutter the other within 3-feet of centerline.

Streets over 500 feet long three cores. One within 3-feet of gutter, one within 3-feet of centerline the other between the two.

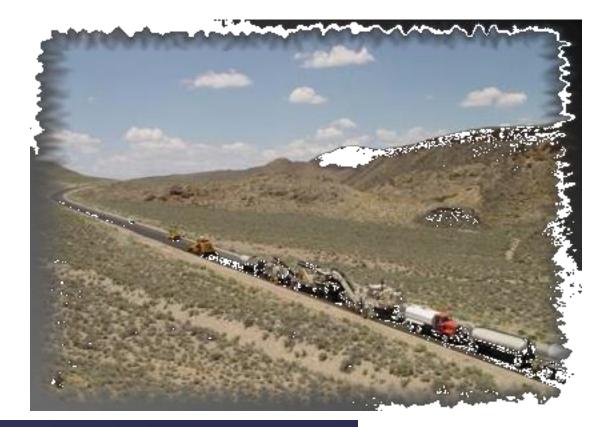
Washington Road, Tazewell County, IL


Initial Construction & Life Cycle Costs

5.5 mi project, 15 year LCC analysis, 7% interest rate, 3% inflation, 4% discount rate Data from Tazewell County

MEPDG Curves for Reflex (Kansas Projects)

Project Selection


How do I select my project appropriately?

- Take into consideration Location and Geometric Constraints
- Take into consideration Design Life and Traffic Data
- Perform Distress Analysis.
- Look at Funding availability
- Consider Environmental and green paving aspects
- Study the impact of user delays and traffic control on the project
- Do you homework on Site Assessment
- Perform Life Cycle Cost Analysis using the findings from above

Cash In On the Savings!

Thank you.

Questions?

